
1. Introduction: Meta Analysis and
Interlaboratory Studies

This article is concerned with mathematical aspects
of an ubiquitous problem in applied statistics: how to
combine measurement data nominally on the same
property by methods, instruments, studies, medical
centers, clusters or laboratories of different precision.
One of the first approaches to this problem was sug-
gested by Cochran [1], who investigated maximum
likelihood (ML) estimates for one-way, unbalanced,
heteroscedastic random-effects model. Cochran re-
turned to this problem throughout his career [2, 3], and
Ref. [4] reviews this work. Reference [5] discusses
applications in metrology and gives more references.

The problem of combining data from several sources
is central to the broad field of meta-analysis. It is most

difficult when the unknown measurement precision
varies among methods whose summary results may not
seem to conform to the same measured property.
Reference [6] provides some practical suggestions for
dealing with the problem.

In this paper we investigate the ML solutions of the
random effects model which is formulated in Sec. 2. By
representing the likelihood equations as simultaneous
polynomial equations, the so-called Groebner basis
for them is derived when there are two sources. A
parametrization of such solutions is suggested in
Sec. 2.1. The maxima of the likelihood function are
compared for positive and zero between-labs variance.
A numerical method for solving likelihood equations
by reducing them to an optimization problem for a
homogeneous objective function is given in Sec. 2.2.
An alternative to the ML method, the restricted maxi-
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mum likelihood is considered in Sec. 3. An explicit
formula for the restricted likelihood estimator is
discovered in Sec. 3.2 in the case of two methods.
Section 4 deals with the situation when methods
variances are considered to be known, and an upper
bound on the between-method variance is obtained.
The Sec. 5 discusses the relationship between likeli-
hood equations and moment-type equations, and
Sec. 6 gives some conclusions. All auxiliary material
related to an optimization problem and to elementary
symmetric polynomials is collected in the Appendix.

2. ML Method and Polynomial Equations

To model interlaboratory testing situation, denote by
ni the number of observations made in laboratory
i, i = 1, ..., p, whose observations xij have the form

(1)

Here μ is the true property value, bi represents the
method (or laboratory) effect, which is  assumed to be
normal with mean 0 and unknown variance σ 2, and εij

represent independent normal, zero mean random
errors with unknown variances τi

2.
For a fixed i, the i-th sample mean xi = ∑j xij /ni is

normally distributed with the mean μ and the variance
σ 2 + σi

2, where σi
2 = τi

2 /ni . If the σ’s were known, then
the best estimator of μ would be the weighted average
of xi with weights proportional to 1 / (σ 2 + σi

2). Since
these variances are unknown, the weights have to be
estimated. Traditionally to evaluate σi

2 one uses the
classical unbiased statistic si

2 = ∑j (xij −xi)2 / (nivi),
vi = ni −1, which has the distribution σi

2χ 2(vi) /vi. Since
statistics xi , si

2, i = 1, ..., p, are sufficient, we use the
likelihood function based on them.

The ML solution minimizes in μ, σ 2, σi
2, i = 1, ..., p,

the negative logarithm of this function  which is
proportional to

(2)

It follows from (2) that if σ^
i
2 is the ML estimator of

σi
2, then σ^

i
2 > 0. However, it is quite possible that

σ^
i
2 = 0. In order to find these estimates one can replace

μ in (2) by

(3)

which reduces the number of parameters from p + 2 to
p + 1.

Our goal is to represent the set of all stationary points 
of the likelihood equations as solutions to simultaneous
polynomial equations. To that end, note that

(4)

This formula, which easily follows from the
Lagrange identity [7, Sec. 1.3], will be used with
wi = (σ 2 + σi

2)−1.
We introduce a polynomial P of degree p in σ 2,

(5)

elementary symmetric polynomial. Another polynomial

(6)

Since

(7)

the identity (4) can be written as

(8)
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The negative log-likelihood function (2) in this
notation is

(9)

Let Pi = Π k≠i (σ2+σk
2) be the partial derivative of P

with regard to σi
2; denote by Qi the  same partial deriv-

ative of Q and by P′i = ∑j:j≠i Pij the derivative of
P′ (σ2, σ2,…,σp

2). By differentiating (9), we see that the
stationary points of (2) satisfy polynomial equations,

(10)

Each of these polynomials has degree 4 in σi
2,

i = 1,…, p. When σ 2 = 0, P = ∏σi
2, and the equations

(10) simplify to

(11)

These polynomials have degree 3 in σi
2. If σ2 > 0, in

addition to (10) one has

(12)

and F has degree 3p−3 in σ 2.
In both cases the collection of all stationary points

forms an affine variety whose structure can be studied
via the Groebner basis of the ideal of polynomials (11)
or (10) and (12) which vanish on this variety. The
Groebner basis allows for successive elimination of
variables leading to a description of the points in the
variety, i.e., to the characterization of all (complex)
solutions. There are powerful numerical algorithms for
evaluation of such bases [8]. Many polynomial likeli-
hood equations are reviewed in Ref. [9]. We determine 
the Groebner basis for equations (11) when p = 2 in the
next section.

2.1 ML Method: p = 2

When p = 2, Q = (x1−x2)2. If σ 2 = 0, the polynomial
equations (11) take the form

(13)

The Groebner basis is useful for solving these
equations as it allows elimination of one of the

variables, say, σ2
2. With n = n1 + n2, f = n + n2,

u = σ1
2 / (x1−x2)2, υ = σ2

2 / (x1−x2)2, z1 = v1s1
2 / (x1−x2)2

and z2 = v2 s
2
2 / (x1−x2)2, under lexicographic order,

σ1
2 > σ2

2 , the  Groebner basis for equations (13) written
in the form

(14)

(15)

consists of two polynomials,

(16)

and

(17)

This fact can be derived from the definition of the
Groebner basis and confirmed by existing computa-
tional algebra software.

It follows that for stationary points u,υ, G1(u,υ) =
G2(u,υ) = 0. All these points can be found by express-
ing u through υ via (17),

(18)
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substituting this expression in (16), and solving then
the resulting sextic equation for υ,

(19)

Thus, there are 3 × 6 = 18 complex root pairs out of
which positive roots u, υ are to be chosen. Although in
practice most all these roots are complex or nega-
tive and are not meaningful, sometimes the number
of positive roots is fairly large. For example, x1=

particular case one has to compare the likeli-
hood function evaluated at these solutions with the

(The likelihood is maximized at the last solution.)

(20)

+ vi si
2 ] /ni . Evaluation of second derivatives shows that

These solutions are to be compared with the solutions

(21)

(22)

(23)

equivalent. The fact excludes the possibility that

(24)

Unfortunately, the Groebner basis for equations
(21)-(23) has a much more complicated structure: the
form of the monomials entering into the basis poly-
nomials depends on z1, z2, n1 and n2 . To find solutions
to (21)-(23) we start with conditions on u and υ for
which y > 0 in (21)-(23).

For fixed u and υ the behavior of the derivative of (9)
with respect to σ 2 is determined by that of the cubic
polynomial (12) which now takes the form,

(25)

This derivative is positive if and only if F(y) > 0.
As is easy to check, the derivative of F has two roots:

−(u + υ) /2 and y* = 1/6 − (u + υ) /2. The polynomial
F has no positive roots if and only if either y* ≤ 0,
F(0) ≥ 0 or if y* > 0, F( y*) ≥ 0 . We rewrite these
conditions as follows: (21) has a positive root if and
only if either 

(26)

or

(27)

If (26) holds, there is a unique positive stationary
point. When condition (27) is met, only the largest root
of F(y) = 0 (i.e., the one exceeding y*) can be the ML
estimator σ^ 2. Analysis of second derivatives shows
that ( y, u, υ), y > 0, can provide the minimum only
if 2y + u + υ > √3

−
|u − υ | and ( y + u)(y + υ) min

(v1( y + u) /u, v2 ( y + υ) /υ) ≥ y |u − υ | .
Figure 1 shows the region where (21) has a positive

root in the (u, υ) plane. Its boundary is formed by two
straight segments where 3√3

−
|u − υ | = 1, 3(u + υ) ≤ 1,

and by a cubic curve when u + υ ≥ 1/3. The largest
possible value of u or υ such that σ^ 2 > 0 is 8/27.
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To study further the form of solutions to (21)-(23),
we use the fact that 

(28)

which can be shown by the direct calculation or by the
argument from Sec. 2.2. Thus assuming the condition
z1 / u + z2 /υ + 1/ (2y + u + υ) = n, one can parametrize
the solutions of Eqs. (21)-(23) as follows: for s
in the unit interval, u =

where w, 0 < w < 1, solves the cubic equation u − υ =

(29)

The conditions (26) and (27) reduce to the inequalities,

(30)

and

(31)

The discriminant of the cubic equation (29) reveals

following restriction on the range of s : | 1 − 2 w |
≤ | 1 − 2 s| with a strict inequality when y > 0.

The end points of this domain can be found as
solutions to the equation,

(32)

which is a quartic equation in ξ = 1−2s,

(33)
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Fig. 1. The region where (21) has a positive root. The squares mark the points where the boundary changes from
linear to cubic. Two points of this region at which u or υ take the largest possible value (8/27) are marked by o.
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If the equation (33) has two distinct roots ξ_, ξ
_

in
the interval (−1, 1), then the range of s-values is the
interval [s_, s

_
], 0 < s_ = (1 − ξ

_
) / 2 < s

_
= (1−ξ_) / 2 < 1,

and for s ∈ (s_, s
_

) the polynomial in (32) is negative.
Therefore, if there are two roots of (29) in the interval
(0, 1) which have the same sign as 1 − 2s, the one with
the smallest absolute value of |1 − 2w|, i.e., the one with

tions of equations (21)-(23) are parameterized by s∈ [s_, s
_

]. 
To determine conditions for the equation (33) to have

two roots ξ_, ξ
_

, in the interval (−1, 1), observe first that
it cannot have more than two roots there. Indeed the
polynomial in (33) assumes negative values at the end
points, and it has exactly two roots if and only if there
is a point in this region at which that polynomial is
positive.

If the derivative of this polynomial, 4ξ 3− 4 (n − 1)
ξ /n − 8Δ /n, does not vanish in (−1, 1), then (33)
cannot have two roots there. This happens when this
derivative has just one real root, or equivalently the
discriminant of the cubic polynomial is negative which
means that | Δ | > [(n − 1) / (3n)]3/2 and which implies 

that | Δ | > 1/2. Then the derivative takes negative
values at the end points of the interval (−1, 1).

If ξ0 is the point of maximum of the polynomial (33)
in (−1, 1), then 4ξ 0

3− 4(n − 1) ξ0 /n = 8Δ/n, and the
roots ξ_, ξ

_
exist if and only if

(34)

According to inequality (34),

(35)

(36)
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2
1 2ˆThe region where > 0 when = 4, = 4 .n nσFig.3.

2
1 2ˆThe region where > 0 when = 8, = 3 .n nσFig.4.



must have two roots ξ_, ξ
_

as it takes a positive value
when ξ = 0. Since sign(ξ 0) = −sign (Δ), assuming that

(37)

which means that

(38)

The condition (38) can also be shown to be sufficient
for the existence of ξ_, ξ

_
.

This parametrization and the Groebner basis for (13)
allow for given z1, z2 to compare the minimal values of
(9) when y > 0 with that when y = 0. Figures 2-4 show
bounded regions where σ̂ 2 > 0 in the space (z1, z2) when
n1 = n2 = 2, n1 = n

2
= 4, or n1 = 8, n2 = 3. When

n1 = n
2
≥ 3, this region is a triangle, z1 + z2 < c; for

n1 ≠ n2 it is more complicated.
We summarize the obtained results.

Theorem 2.1. When p = 2, the Groebner basis for (13)
is given by (16), (17). The solutions of (21)-(23) satisfy
conditions (26) and (27). These solutions can be
parametrized via (29) by s ∈ (s_, s

_
) where the end points

can be found from (32) given that (38) holds.

We conclude by noticing the relationship of the prob-
lem discussed here to the likelihood solutions to the
classical Behrens-Fisher problem [10] which assumes
that σ 2 = 0.

2.2 Solving Likelihood Equations Numerically

In view of the difficulty in evaluating the Groebner
basis for p > 2, an iterative method to solve the opti-
mization problem in (2) is of interest. Notice that the
sum of the first two terms in (2) is a homogeneous
function of σ 2, σ 1

2, …, σ p
2, of degree −1. Therefore,

with n = ∑i ni ,

(39)

which reduces the problem to minimization of such

To minimize the objective function in (39)

(40)

one can impose a restriction on y0, y1, …, yp such as
∑ yi = 1 or λ0 = 1. Note that F tends to +∞ when
yi → 0 or yi → +∞ for any fixed y0 > 0 . Since
∑i (xi − μ

_
) / (y0 + yi) = 0, one sees that

(41)

which must be positive for large yi and negative for
sufficiently small yi .
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If y0 > 0, by equating this derivative to zero, we obtain

(42)

The equation (42) must have a positive root, which
means that for λi evaluated at a stationary point,

(43)

and

(44)

It follows that for any stationary point, 2si
2 > λ0yi, i.e.,

(45)

For a fixed value of λ0, say, λ0 = 1, the Eq. (42) leads
to an iteration scheme, with specified initial values of
y0

(0) and μ
_

0. We take these to be the estimates arrived at
by the method of moments as described later in Sec. 5,
but once they are given, one can solve the cubic
equation for υi = y0 / yi ,

(46)

It is easy to see that each of these equations has
either one or three positive roots. If there is just one
root, then it uniquely defines υi. In case of three positive
roots, the root which minimizes (40) is chosen. Under
this agreement, at stage k in (46) υi = υi

(k), y0 = y0
(k),

μ
_

= μ
_

k , and after solving (46) we put

(47)

and

(48)

k = 0, 1, ….

As in [11], (46) defines a sequence converging to a
stationary point, and at each step the value of (40) is
decreased.

Theorem 2.2 Successive-substitution iteration defined
by equations (46), (47) and (48) converges to a station-
ary point of (40) so that at each step this
function decreases. At any stationary point inequalities
(43) and (44) hold and (45) is valid.

Notice that Vangel and Rukhin tacitly assume in [11]
that y0 > 0. The case of the global minimum attained
at the boundary, i.e., when y0 = 0, can be handled as
follows. Equating (41) to zero gives

(49)

and a simpler version of an iterative scheme

(50)

k = 0, 1, …, yj
(0) = sj

2, y0 = 0, converges fast. However
the solutions obtained via (46), (47), (48) and (50)
are to be compared by evaluating L. To assure that a
global minimum has been found, several starting values
should be tried.

The maximum likelihood estimator and the restrict-
ed maximum likelihood estimator discussed in the next
section can be computed via their R-language imple-
mentation through the lme function from nlme library
[12]. However this routine has a potential (false or
singular) convergence problem occurring in some
practical situations.
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3. Restricted Maximum Likelihood

The possible drawback of the maximum likelihood
method is that it may lead to biased estimators. Indeed
the maximum likelihood estimators of σ ’s do not take
into account the loss in degrees of freedom that results
from estimating μ. This undesirable feature is eliminat-
ed in the restricted maximum likelihood (REML)
method which maximizes the likelihood corresponding
to the distribution associated with linear combinations
of observations whose expectation is zero. This method
discussed in detail by Harville [13] has gained consid-
erable popularity and is employed now as a tool of
choice by many statistical software packages.

The negative restricted likelihood function has the
form

(51)

By using notation (5) and (6), we can rewrite

(52)

To estimate σ 2 and σi
2, i = 1, …, p one has to find the

minimal value of Q /P′ + log P′. The derivative of this
function in σ 2 is proportional to the polynomial H of
degree 2p−3 in this variable,

(53)

as opposed to 3p−3 which is the degree of the corre-
sponding polynomial F in (12) under the ML scenario.

For fixed σi
2, i = 1, …, p , all p roots of the poly-

nomial P = P (σ 2) are real numbers, so that

(54)

[14, 3.3.29].

An application of (54) shows that

(55)

Since P (σ 2) > 0, if F has a positive root σ 2, then
H also must have a positive root τ 2. Moreover,
τ 2 ≤ σ 2, so that the ML estimator of σ 2 is always small-
er than the REML estimator of the same parameter for
the same data.

The polynomial equations for the restricted likeli-
hood method have the form,

(56)

with each of these polynomials being of degree 3 in σi
2,

i = 1, …, p. When σ 2 > 0, Eqs. (56) have to be aug-
mented by the equation H = 0.

3.1 Solving REML Equations

To solve the optimization problem in (51) in practice
one can use a method similar to that in Sec. 2.2. Indeed, 

(57)
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The minimizing value of λ is λ 0 = (∑i(xi−μ
_

)2 /
(y0 + yi) + ∑i visi

2 /yi) / (n−1), and the objective function
in (57) is homogeneous of degree 0 in y’s. If
y0, y1, …, yp is a solution to the problem (57), then
σ∼ 2 = λ0 y0, σ∼

1
2 = λ0 y1, …, σ∼

p
2 = λ0 yp is a REML

solution.
When y0 > 0, the function in (57) takes the form

(58)

Its derivative with respect to yi is

(59)

As in Sec. 2.2, for a fixed value λ0 = 1 we can use an
iterative scheme which is based on (59). However, now
one has to specify initial values of y0

(0), μ
_

0 and of
A(0) = ∑(y0 + yj)−1 after which the cubic equations for
υi = y0 / yi ,

(60)

are solved for i = 1, …, p, with updating as in (47) and
(48). Each of these equations has either one or three
positive roots. If there is just one root, then it defines
vi , out of three roots the largest is taken.

If y = 0, then with the vectors e = (1, …, 1)T,
z = (z1,…, (zp)T, zi = 1/σi

2, and p × p symmetric matrix
defined by positive elements ((xi − xj)2+vi si

2+vj sj
2) /2,

(58) takes the form

(61)

The gradient of the function in (61)

(62)

and its Hessian is

(63)

where n→/ z is the vector with coordinates ni / zi ,
i = 1, …, p, leads to the iteration scheme,

(64)

k = 0, 1, …, which converges fast.
The solutions obtained via (60) and (64) are to be

compared by evaluating RL in (57).

3.2 REML p = 2 

To find the REML solutions σ∼
i
2 and σ∼ 2 when p = 2

notice that (51) takes the form

(65)

which shows that if (x1 − x2)2 ≥ s1
2 + s2

2,

(66)

(67)

Indeed this choice simultaneously minimizes each of
three bracketed terms in (65) guaranteeing the global
minimum at this point. When (x1 − x2)2 < s1

2 + s2
2, as we

will see, σ 2 = 0. To find σi
2, i = 1, 2, one can employ

the Groebner basis of the polynomial equations (56)
which in the notation of Sec. 2.1 takes the form
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(68)

(69)

This Groebner basis consists of three polynomials

(70)

whose coefficients are not needed here,

All stationary points of the restricted likelihood
equations can be found by solving the cubic equation
G5 (υ) = 0 for υ > 0, and substituting this solution in
(71), allowing one to express u through v,

Thus, in this case there are 3 complex non-zero roots
pairs u, v.

Another approach is to use the argument in Sec. 3.1
which for a fixed sum 2y0 + y1 + y2 = 1, leads to the
optimization problem,

(73)

If (x1 − x2)2 < s1
2 + s2

2, then according to Lemma 1 in
the Appendix, for a fixed sum y1 + y2 = y, the minimum
in (73) monotonically decreases when 0 < y ≤ 1, so that
this minimum is attained at the boundary, y1 + y2 = 1, in
which case indeed σ∼ 2 = 0. Thus, one can solve the
cubic equation for w = 1 − 2y1 ,

(74)

An alternative method is to use the iteration scheme
(64) to solve (57).

4. Known Variances
4.1 Conditions and Bounds for Strictly Positive

Variance Estimates

In view of the rather complicated nature of likeli-
hood equations, in many situations it is desirable to
have a simpler estimating method for the common
mean μ. The most straightforward way is to assume
that the variances σi

2, i = 1, …, p, are known. In this
case, essentially suggested in Ref. [15], but also pur-
sued in Refs. [16, 17], these variances are taken to be
si

2 (or a multiple thereof). Because of (3), the only
parameter to estimate is y = σ 2.
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We give here upper bounds on the ML estimator
σ^ 2 and on the REML estimator σ~ 2.

Theorem 4.1 Assume that the variances σi
2,

i = 1, …, p, are known. Then

(75)

and

(76)

In particular, if

(77)

then σ^ 2 = 0. If

(78)

σ~ 2 = 0.
Proof: We prove first that

(79)

Indeed, one can write

(80)

and Lemma 3 in the Appendix shows that since
(p − 1 − ) | k − 1 −  | ≤ (p − 1)(k − 1), (79) holds.

One gets for the polynomial H in (53),

(81)

which is positive under condition (78). Then σ~ 2 = 0.
Similarly (77) and (54) imply that

(82)

To prove (76) observe that with y replaced by y + a
a formula like (79) holds for any positive a. The only
modification is that p −  (σ1

2, …, σp
2) is replaced by

p −  (a + σ1
2, …, a + σp

2) and the H(k)(a) /k! represent
polynomial coefficients. Then a version of Lemma 3 in
the Appendix states that

(83)

When p = 2, the bounds (75) and (76) are sharp as
(24) and (67) show. When p increases, their accuracy
decreases. Section 4.2 gives necessary and sufficient
conditions for σ~ 2 = 0 when p = 3. It is possible to get
better estimates under additional conditions. For exam-
ple, if the ordering of sequences p −  (σ−ij

2) (σi
2 + σj

2)
(notation of Lemma 2) and (xi − xj)2 (σi

2 + σj
2)−1 is the

same, then the maximum of (xi − xj)2 (σi
2 + σj

2),
1 ≤ i < j ≤ p, in (77) and (78) can be replaced by their
average.

4.2 Example: Restricted Maximum Likelihood for
p = 3

When p = 3, Q(y) = q0y + q1, is a polynomial of
degree one, and

(84)

is a polynomial of degree three. If H(0) = h3 < 0, it has
a positive root, which means that σ~ 2 > 0. Otherwise the
existence of a positive root is related to the sign of the
discriminant

(85)

If D < 0 and h3 ≥ 0, there is just one real root which
must be negative, and then σ∼ 2 = 0. If D ≥ 0, then there
are three real roots. The condition h3 ≥ 0 implies that
either two of them are positive and one is negative (so
that at least one of the coefficients h1 or h2 is negative)
and σ∼ 2 > 0, or all three roots are negative (so that
σ∼ 2 > 0.)
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Separation between these cases depends on the ratio

the proof of Theorem 4.1, E1 ≥ λ , but we do not use
this fact here.

h2 = 0, i.e., when E2 = λ −2 E1
2/3, D factorizes as fol-

(86)

which is defined for λ < 0.5137…, and let E


1 be the
(only) positive root of the equation

(87)

The discriminant of (87) is negative, and according
to Descartes’s rule there are always two complex roots,
and one positive root. It is easy to check that E



1 = E


1(λ)
is monotonically increasing in λ < 0 and E



1(1/16) = 1/4.
In this notation, when λ ≤ 1/16 (so that h2 ≤ 0

implies that h1 ≤ 0), the region {(E1, E2) : E2 ≤ E1
2/3,

h3 ≥ 0, σ∼ 2 > 0}, is formed by three curves: (i ) h3 = 0

between the point

but the probability of having the likelihood solution
there is zero.

5. Moment-Type Equations
5.1 Weighted Means Statistics

When the within-lab and between-lab variances σi
2

and σ 2 are known, the best (in terms of the mean
squared error) unbiased estimator of the treatment
effect μ in the model (1) is a weighted means statistic
(3) with wi = wi

0 = 1 / (σ 2 + σi
2 ). Even without the

normality assumption for these optimal weights,
E ∑i wi

0 (xi − μ− )2 = p − 1, and

(88)

If V ar(xi) = σi
2 + σ 2, but the weights wi are arbitrary,

(89)

In particular, when wi = 1/σi
2

(90)

The simplest estimate of the within-trials vari-
ances σi

2 is by the available si
2 , but the problem of

estimating the between-trial component of variance
σ2 remains.
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5.2 DerSimonian-Laird Procedure

By employing the idea behind the method of
moments, DerSimonian and Laird [18] made use of the
identity (90) as an estimating equation for μ and σ 2,
provided that σi

2 are estimated by si
2, in the following

way. For weights of the form

(91)

determine a non-negative y = yDL from the formula,

(92)

estimators for the common mean (the Graybill-Deal
estimator). In other words, the statistic x~ 0 and the weights

5.3 Mandel-Paule Method

The Mandel-Paule algorithm uses weights of the
form (91) as well, but now y = yMP , which is designed
to approximate σ 2, is found from the moment-type
estimating equation,

(93)

See Refs. [15], [19]. The modified Mandel-Paule pro-
cedure with y = yMMP is defined as above, but p − 1 in
the right-hand side of (93) is replaced by p, i.e.,

(94)

Notice that when p = 2, the DerSimonian-Laird
estimator coincides with the Mandel-Paule rule, as, in
this case,

(95)

so that this estimator is similar to the REML estimates
estimates (66) and (67). In the general case, both of
these rules set y = 0, when

(96)
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Fig. 5. The region where h 3 ≥ 0 and σ∼ 2 > 0 when λ = 1/27. The solid line is h 3 ≥ 0, the dash-dotted line
is E2 = E1

2/ 3 , and the dotted line is D = 0. The point M1 is marked by +, the point M2 is marked by a
square, the point M3 by o.
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It was shown in Ref. [20] that the modified Mandel-
Paule is characterized by the following fact: the ML
estimator σ^ 2 of σ 2 coincides with yMMP , if in the repa-
rametrized version of the likelihood equation the
weights wi admit representation (91). As a conse-
quence, the corresponding weighted means statistic (3)
must be close to the ML estimator, so that the modified
Mandel-Paule estimator approximates its ML counter-
part. Thus, the modified Mandel-Paule estimator can be
interpreted as a procedure which uses weights of the
form 1 / (y + si

2), instead of solutions of the likelihood
equation that are more difficult to find, and still main-
tains the same estimate of σ 2 as ML.

A similar interpretation holds for the original
Mandel-Paule rule and the REML function [21]. For
this reason both Mandel-Paule rules are quite natural. It
is also suggestive to use the weights (91) with
y = yMP determined from the Mandel-Paule equation
(93) as a first approximation when solving the
likelihood equations via the iterative scheme (47) and
(48).

5.4 Uncertainty Assessment

It is tempting to use formula (88) to obtain an estima-
tor of the variance of x~ . For example, DerSimonian and
Laird [18] suggested an approximate formula for the
estimate of the variance of their estimator,

(97)

Similarly motivated by (88), Paule and Mandel [19]
suggested to use [∑i (yMP + si

2)−1]−1 to estimate the
variance of x~MP . However these estimators typically
underestimate the true variance, Ref. [5]. They are not
GUM consistent [22] in the sense that the variance esti-
mate is not representable as a quadratic form in devia-
tions xi − x~ .

Horn, Horn and Duncan [23] in the more general
context of linear models have suggested the following
GUM consistent estimate of V ar (x~), which has the
form ∑i ωi

2 (xi − x~ )2 / (1 − ωi), with ωi = wi / ∑k wk .
When the plug-in weights are ωi = (y + si

2)−1 /
∑k (y + sk

2)−1, i = 1, …, p, this estimate is

(98)

Simulations show that (98) gives good confidence in-

Paule rule or the DerSimonian-Laird procedure they

when all sample means are close xi ≈ x~ , then yDL = 0
and the uncertainty estimate (∑i si

−2)−1 may be a more
satisfactory answer than δ ≈ 0.

When p = 2,

(99)

In this case δ is an increasing function of y with the
largest value (x1 − x2)2 /4 attained when y → ∞.

An alternative method of obtaining confidence
intervals for μ on the basis of REML estimators was
suggested in Ref. [24] for an adjusted estimator of

based on the inverse of the Fisher informa-
tion matrix. This (not GUM consistent) estimator is
more complicated.

6. Conclusions

The original motivation for this work was an attempt
to employ modern computational algebra techniques by
evaluating the Groebner bases of likelihood polynomi-
al equations for the random effects model. While this
attempt leads to an explicit answer when there are two
labs with no between-lab effect, it was not successful in
a more general situation. The classical iterative algo-
rithms appear to be more efficient in this application
although they do not guarantee the global optimum.
Simplified, method of moments based procedures,
especially the DerSimonian-Laird method, deserve
much wider use in interlaboratory studies.
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7. Appendix
7.1 Lemma 1

(100)

is monotonically nondecreasing in the interval (0, 1) 

Proof: With B = (1 + z1 / y1 + z2 / y2) / (n − 1), any
stationary point (y1, y2) in (100) satisfies the simultane-
ous equations,

(101)

where ζ is the Lagrange multiplier. By multiplying
these equations by y1 and y2 respectively and adding
them, we see that ζ y = 1 − 1/B. Notice that B ≤ 1 if
and only if ζ ≤ 0, which means that B ≥ zi / (vi yi) for
i = 1, 2. Then z1 /v1 + z2 /v2 ≤ 1, which contradicts the
condition of the Lemma 1. Therefore, B > 1.

To prove Lemma 1 it suffices to show that the deriv-
ative of (100) is negative. This fact follows from the
inequality

(102)

which can be proven by differentiation of (101). Indeed
for i = 1, 2,

(103)

Since y1 + y2 = y, and y′1 + y′2 = 1, by adding these iden-
tities we get

(104)

7.2 Elementary Symmetric Polynomials:
Lemmas 2 and 3

We note the following identities for elementary
symmetric polynomials. 

(105)

Comparison of the coefficients of the polynomial

(106)

By differentiating the identity,

(107)

Combined with (105), identities (106) and (107)
demonstrate the following formula (108) (which the
author was unable to find in the literature.)

Lemma 2 Under the notation above, for

(108)

The following result Lemma 2 gives an upper bound
on the coefficients of polynomial Q.

Lemma 3 For  = 0, 1, , …, p − 2,

(109)
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Indeed,

(110)
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